Chapitre 6

Nombres complexes

Plan du chapitre

1	Intro	<mark>duction</mark>	2
	1.1	Le nombre i , l'ensemble $\mathbb C$	2
	1.2	Partie réelle et partie imaginaire	2
	1.3	Réels et imaginaires purs	3
2	Opéra	ations avec les complexes	3
	2.1	Calculer avec $+,-,\times,/$	3
	2.2	Sommes de complexes	4
	2.3	Conjugué et interprétation géométrique d'un complexe	4
3	Modu	de	6
	3.1	Définition et interprétation géométrique.	6
	3.2	Écriture algébrique de $\frac{1}{z}$	6
	3.3	Propriétés du module	7
	3.4	Cas d'égalité dans l'inégalité triangulaire	9
4	L'exponentielle $e^{i heta}$		9
	4.1	Cercle et disque du plan complexe	
	4.2	La notation $e^{i\theta}$	0
	4.3	Propriétés de l'exponentielle complexe	1
	4.4	Application à la trigonométrie.	2
5	La for	rme trigonométrique	3
	5.1	Forme trigonométrique	3
	5.2	Argument et interprétation géométrique de $re^{i\theta}$	4
	5.3	La forme fait la force – Passer d'une forme à l'autre	5
	5.4	Compléments de calculs en complexe et trigonométrie	6
6	Résol	ution d'équations dans $\mathbb C$	8
	6.1	Racine carrée d'un nombre complexe	8
	6.2	Équations du second degré à coefficients complexes	9
	6.3	Relations coefficients racines	0
	6.4	Racines <i>n</i> -ième	1
7	Expo	nentielle complexe	3
8	Géon	nétrie – alignement, orthogonalité de vecteurs	4
	8.1	Propriétés de l'argument	4
	8.2	Alignement de vecteurs	4

1 Introduction

1.1 Le nombre i, l'ensemble $\mathbb C$

On admet l'existence d'un nombre, noté i, qui vérifie $i^2 = -1$. Ce nombre i n'est pas dans \mathbb{R} , car tout carré d'un réel est positif. On admet qu'on peut construire un ensemble \mathbb{C} , qui contient \mathbb{R} et i, et sur lequel on peut définir des opérations algébriques $(+, -, \times, /)$ qui obéissent aux mêmes règles que celles des réels.

Les éléments de \mathbb{C} sont appelés des (nombres) complexes. On les désigne en général par les lettres z, u ou v.

Définition 6.1

On définit <u>l'ensemble des (nombres) complexes,</u> noté $\mathbb C$, par l'ensemble

$$\mathbb{C} = \left\{ a + ib \mid (a, b) \in \mathbb{R}^2 \right\}$$

Ainsi, tout nombre complexe z peut s'écrire z = a + ib avec $a, b \in \mathbb{R}$. On admet que l'écriture ci-dessus est *unique*, i.e. :

$$\forall z \in \mathbb{C} \quad \exists \boxed{!} (a,b) \in \mathbb{R}^2 \qquad z = a + ib$$

L'écriture de z sous la forme z = a + ib est dite la forme algébrique de z.

1.2 Partie réelle et partie imaginaire

Étant donné un complexe z, les réels a et b qui vérifient z=a+ib sont donc déterminés de manière unique. Cela justifie la définition suivante.

Définition 6.2

Soit $z \in \mathbb{C}$ et $a, b \in \mathbb{R}$ tels que z = a + ib.

- Le réel a, noté Re z, est appelé la partie réelle de z. et ch z
- Le réel *b*, noté Im*z*, est appelé la partie imaginaire de *z*.

En particulier, on a toujours z = Re z + i Im z.

Rez et Imz sont des nombres **réels** (et pas des complexes!)

Théorème 6.3 – Identification (de la partie réelle et de la partie imaginaire)

Deux complexes sont égaux si et seulement si ils ont la même partie réelle et la même partie imaginaire :

$$\forall z, z' \in \mathbb{C}$$
 $z = z'$ \iff $\operatorname{Re} z = \operatorname{Re} z' \text{ et } \operatorname{Im} z = \operatorname{Im} z'$

Dit autrement, pour tous réels a, b, a', b', on a :

$$a+ib=a'+ib'\iff (a=a'\text{ et }b=b')$$

Démonstration. Cela découle de l'unicité de l'écriture sous forme algébrique qu'on a admise précédemment. $\ \square$

Remarque. En particulier, $z = 0 \iff \text{Re } z = \text{Im } z = 0$. Cela conduit à poser

$$\mathbb{C}^* := \mathbb{C} \setminus \{0\} = \{a + ib \mid (a,b) \in \mathbb{R}^2, (a,b) \neq (0,0)\}$$

1.3 Réels et imaginaires purs

• Tout réel a peut être vu comme un nombre complexe sous la forme a+0i. De ce fait, l'ensemble $\mathbb R$ des nombres réels est un sous-ensemble de $\mathbb C$, qui correspond aux complexes qui ont une partie imaginaire nulle :

$$\mathbb{R} = \{ z \in \mathbb{C} \mid \operatorname{Im} z = 0 \} = \{ a \neq \emptyset i \mid a \in \mathbb{R} \} \qquad \subset \mathbb{C}$$

• Un nombre complexe qui s'écrit sous la forme *i b* est appelé un <u>imaginaire pur</u>. L'ensemble des imaginaires purs est noté :

$$i\mathbb{R} := \{ z \in \mathbb{C} \mid \operatorname{Re} z = 0 \} = \{ 0 \neq ib \mid b \in \mathbb{R} \} \qquad \subset \mathbb{C}$$

Théorème 6.4 - Caractérisation des réels et imaginaires purs par Re et Im

Soit $z \in \mathbb{C}$.

- $z \in \mathbb{R} \iff \operatorname{Im} z = 0$
- $z \in i \mathbb{R} \iff \operatorname{Re} z = 0$

On notera que $\mathbb{R} \cap i \mathbb{R} = \dots$

Si on dit que z est un complexe *non réel*, cela signifie que $z \in \ldots$, c'est-à-dire que $Imz \ldots$

NE JAMAIS écrire d'inégalités avec des complexes (non réels)

Si

 $z \in \mathbb{R}$, on peut écrire " $z \le \dots$ " ou " $z \ge \dots$ ". Ce n'est plus le cas si $z \in \mathbb{C} \setminus \mathbb{R}$. Par exemple on ne doit pas écrire $4i \ge 2i$. De même, le signe d'un complexe n'a aucun sens.

Comme le module est un réel, toutes les inégalités qu'on a écrites plus haut ont un sens. Pour exprimer le fait qu'un complexe z est un réel positif, plutôt que d'écrire " $z \ge 0$ ", mieux vaut écrire " $z \in \mathbb{R}_+$ ".

2 Opérations avec les complexes

2.1 Calculer avec $+, -, \times, /$

Les opérations $+,-,\times,/$ entre complexes sont assez naturelles : les règles de calcul sont identiques à celles de \mathbb{R} , avec les particularités suivantes :

- Dès que le calcul fait apparaître i^2 , on peut le remplacer par -1.
- La fraction $\frac{1}{a+ib}$ a un sens à condition que $a+ib \neq 0$, ce qui revient à dire que $(a,b) \neq (0,0)$. En particulier, on peut librement diviser par i.

G. Peltier 3 / 26

Exemple 1. Soit $a, b \in \mathbb{R}$. Calculer :

$$i^{3} = \dots$$
 $i^{4} = \dots$ $i^{5} = \dots$ $(-i)^{2} = \dots$ $(-i)^{3} = \dots$ $(a+ib)^{2} = \dots$ $(a+ib)(a-ib) = \dots$

La dernière ligne ressemble à des identités remarquables, mais attention ! Il faut absolument avoir isolé parties réelles et parties imaginaires pour les appliquer. Ainsi, si par exemple on veut calculer $(z+z')^2$, il vaut mieux écrire z+z' sous forme algébrique puis utiliser la formule $(a+ib)^2$:

$$\begin{cases} z = 2 + i \\ z' = -1 - 3i \end{cases} \implies (z + z')^2 = \dots$$

2.2 Sommes de complexes

Les formules sommatoires du chapitre précédent se généralisent à des nombres complexes. La démonstration de ces résultats est identique au cas réel. Ce sera souvent (mais pas toujours) le cas avec les complexes. Pour tous $n \in \mathbb{N}$ et $z, u, v \in \mathbb{C}$:

$$1 + z + z^{2} + \dots + z^{n} = \sum_{k=0}^{n} z^{k} = \begin{cases} \frac{1 - z^{n+1}}{1 - z} & \text{si } z \neq 1\\ n + 1 & \text{si } z = 1 \end{cases}$$

(Comme pour les sommes de réels, si en développant une somme $\sum (\cdots)$, on doit écrire z^0 , on écrira 1 à la place.)

$$(u+v)^n = \sum_{k=0}^n \binom{n}{k} u^k v^{n-k} \qquad (\text{avec la convention } 0^0 = 1)$$

$$\forall n \in \mathbb{N}^*$$
 $u^n - v^n = (u - v) \sum_{k=0}^{n-1} u^k v^{n-1-k}$

Théorème 6.5 - Linéarité de Re et de Im

Soit $z, z' \in \mathbb{C}$ et λ un *réel*. Alors

$$\operatorname{Re}(z+z') = \operatorname{Re}z + \operatorname{Re}z'$$
 $\operatorname{Re}(\lambda z) = \lambda \operatorname{Re}z$
 $\operatorname{Im}(z+z') = \operatorname{Im}z + \operatorname{Im}z'$ $\operatorname{Im}(\lambda z) = \lambda \operatorname{Im}z$

L'hypothèse $\lambda \in \mathbb{R}$ est indispensable, si λ est un complexe non réel, les deux formules de droite sont fausses.

Exemple 2.
$$\begin{cases} \text{Im}(i \times (2+3i)) = \dots \\ i \text{Im}(2+3i) = \dots \end{cases}$$

2.3 Conjugué et interprétation géométrique d'un complexe

On appelle plan complexe le plan usuel avec un repère orthonormé (O, \vec{u}, \vec{v}) .

À tout point M de coordonnées (x,y) dans (O,\vec{u},\vec{v}) , on associe le complexe z=x+iy. On dit que z est <u>l'affixe</u> de M et on note M(z) pour désigner ce point.

Définition 6.6

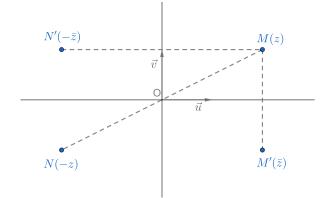
Soit $a, b \in \mathbb{R}$ et $z = a + ib \in \mathbb{C}$. On définit le conjugué de z, noté \overline{z} , comme étant le complexe

$$\bar{z} = a - ib$$

Soit M(z) un point du plan complexe (O, \vec{u}, \vec{v}) .

Le point M' d'affixe \bar{z} est le symétrique de M(z) par rapport à l'axe $(O\vec{u})$.

Le point N d'affixe -z est le symétrique de M(z) par rapport à l'origine O.



Théorème 6.7

Soit $z, u, v \in \mathbb{C}$. On a les relations suivantes :

$$\overline{(\overline{z})} = z$$
 $\overline{u+v} = \overline{u} + \overline{v}$

$$\overline{uv} = \overline{u}\,\overline{v}$$

$$\overline{uv} = \overline{u}\,\overline{v}$$
 et si $v \neq 0$, $\overline{\left(\frac{u}{v}\right)} = \frac{\overline{u}}{\overline{v}}$ $\forall n \in \mathbb{Z}$ $\overline{z^n} = \overline{z}^n$

$$\forall n \in \mathbb{Z} \quad \overline{z^n} = \overline{z}^n$$

$$Re \bar{z} = Re z$$

$$\operatorname{Im} \overline{z} = -\operatorname{Im} z$$

$$z + \overline{z} = 2 \operatorname{Re} z$$

$$z - \overline{z} = 2i \operatorname{Im} z$$

Démonstration. En passant par la forme algébrique de z, u, v ainsi que la définition du conjugué. Toutefois, l'interprétation géométrique permet de retrouver beaucoup de ces propriétés. Montrons par exemple que $z - \overline{z} = 2i \operatorname{Im} z$:

S'il est vrai que $z + \overline{z} \in \mathbb{R}$, on a cependant $z - \overline{z} \in i \mathbb{R}$...

Exemple 3. Résoudre dans $\mathbb{C}:(z+i)^2=\overline{z}^2$.

Théorème 6.8 - Caractérisation des réels et imaginaires purs par le conjugué

Soit $z \in \mathbb{C}$.

- $z \in \mathbb{R} \iff z = \overline{z}$
- $z \in i \mathbb{R} \iff z = -\overline{z}$

3 Module

3.1 Définition et interprétation géométrique

Définition 6.9

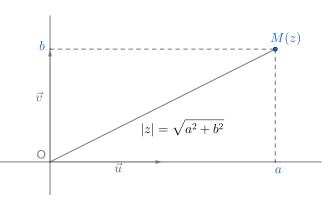
Soit $a,b\in\mathbb{R}$ et $z=a+ib\in\mathbb{C}.$ On appelle $\underline{\text{module}}$ de z, noté |z|, le réel

$$|z| = \sqrt{a^2 + b^2} \ge 0$$

Si z est un réel, le module et la valeur absolue de z coïncident (la notation ne crée donc pas d'ambiguité) : si $z=a+0i\in\mathbb{R}$, on a $|z|=\sqrt{a^2+0^2}=|a|$

Exemple 4. |3-2i| = ...

Si M est un point d'affixe z, alors |z| correspond à la distance OM, par le théorème de Pythagore.



3.2 Écriture algébrique de $\frac{1}{z}$

Remarque. Soit $a,b \in \mathbb{R}$ et $z = a + ib \in \mathbb{C}$. On a :

$$z\overline{z} = (a+ib)(a-ib) = a^2 + b^2 = |z|^2$$

Cette remarque est cruciale pour la méthode suivante :

Méthode – Mettre un complexe $\frac{u}{v}$ sous forme algébrique

Soit $u \in \mathbb{C}$ et $v \in \mathbb{C}^*$. Pour mettre le complexe $\frac{u}{v}$ sous forme algébrique, il faut multiplier la fraction en haut et en bas par le conjugué du dénominateur, i.e. \overline{v} , et utiliser le fait que $v\overline{v} = |v|^2$.

Exemple 5. Mettre sous forme algébrique :

$$\frac{1+4i}{3-2i}=\dots$$

3.3 Propriétés du module

Théorème 6.10 - Propriétés du module

Pour tous $z, u, v \in \mathbb{C}$,

1.
$$|z| = 0 \iff z = 0$$

2.
$$|z| = |\overline{z}| = |-z|$$

3.
$$|\text{Re } z| \le |z| \text{ et } |\text{Im } z| \le |z|$$

$$4. \ \overline{z\overline{z} = |z|^2}$$

5.
$$|uv| = |u||v|$$

6. Si
$$v \neq 0$$
, $\left| \frac{u}{v} \right| = \frac{|u|}{|v|}$

Démonstration. Ces propriétés se démontrent en passant par la forme algébrique. Cependant, l'interprétation géométrique aide à se souvenir des trois premières. Avec le point M(z):

- 1. Dire que |z| = 0 revient à dire que la distance OM est nulle, donc que M et O sont confondus. D'où z = 0.
- 2. Les points $M'(\bar{z})$ et N(-z) sont obtenus par symétrie : par construction, OM = OM' = ON, ce qui permet de retrouver $|z| = |\bar{z}| = |-z|$.
- 3. Enfin, comme $|z|^2 = (\text{Re}z)^2 + (\text{Im}z)^2$, on comprend que $(\text{Re}z)^2 \le |z|^2$ donc $|\text{Re}z| \le |z|$. Idem pour |Imz|.

Théorème 6.11 - Caractérisation des réels et imaginaires purs par le module

Soit $z \in \mathbb{C}$.

•
$$z \in \mathbb{R}_+ \iff z = |z|$$

•
$$z \in \mathbb{R}_- \iff z = -|z|$$

•
$$z \in i \mathbb{R} \iff z = i |z| \text{ ou } z = -i |z|$$

Démonstration. En passant par la forme algébrique, mais là encore, l'interprétation géométrique est assez efficace.

G. Peltier 7 / 26

Théorème 6.12 - Inégalités triangulaires (avec des complexes)

1. Identité remarquable :

$$|u+v|^2 = |u|^2 + |v|^2 + 2\operatorname{Re}(u\overline{v})$$

2. Première inégalité triangulaire :

$$|u+v| \le |u| + |v|$$

3. Seconde inégalité triangulaire :

$$\Big||u|-|v|\Big| \le |u-v|$$

Ces résultats sont similaires au cas réel, y compris l'identité remarquable. Si $u, v \in \mathbb{R}$, on a en effet $\text{Re}(u\overline{v}) = uv$.

Démonstration. 1.

2. En utilisant 1, on obtient:

$$|u+v| \le |u|+|v|$$

$$\iff |u+v|^2 \le (|u|+|v|)^2 \quad \text{par croissance de } x \mapsto x^2 \text{ sur } \mathbb{R}_+$$

$$\iff |u|^2 + |v|^2 + 2 \operatorname{Re}(u\overline{v}) \le |u|^2 + |v|^2 + 2|u||v|$$

$$\iff \operatorname{Re}(u\overline{v}) \le |u||v|$$

Ainsi, il suffit de montrer que $Re(u\bar{v}) \leq |u||v|$ pour conclure. Or,

$$\operatorname{Re}(u\overline{v}) \le |\operatorname{Re}(u\overline{v})| \le |u\overline{v}| = |u||\overline{v}| = |u||v|$$

d'où le résultat.

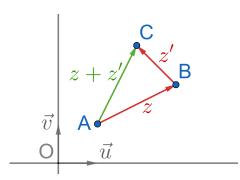
3. La seconde inégalité triangulaire se démontre à partir de la première, comme avec la valeur absolue (cf chapitre 3).

Étant donné deux points A et B du plan d'affixe z_A et z_B , on définit <u>l'affixe du vecteur \overrightarrow{AB} </u> par le complexe $z_B - z_A$. En particulier, le vecteur \overrightarrow{AB} a pour norme $|z_B - z_A|$, ce qui correspond aussi à la distance AB.

Soit A, B, C trois points du plan complexe. On note z l'affixe de \overrightarrow{AB} et z' l'affixe de \overrightarrow{BC} . Dans ce cas, z+z' est

l'affixe du vecteur \overrightarrow{AC} . En particulier, |z+z'| représente la distance AC. L'inégalité triangulaire $|z+z'| \le |z| + |z'|$

signifie que la distance AC est inférieure à la distance AB + BC, peu importe où se trouve le point B.



3.4 Cas d'égalité dans l'inégalité triangulaire

Remarque (Interprétation géométrique de λz). Soit $z \in \mathbb{C}$ et M le point d'affixe z. Pour tout $\lambda \in \mathbb{R}$, on note M_{λ} le point d'affixe λz . Le point M_{λ} est l'unique point tel que

$$\overrightarrow{OM_{\lambda}} = \lambda \overrightarrow{OM}$$

Autrement dit, on obtient M_{λ} en appliquant au point M l'homothétie de centre O et de rapport λ .

Définition 6.13

Soit *u* et *v* deux complexes. On dit que *u* et *v* sont <u>positivement liés</u> si l'une des conditions suivantes est vérifiée :

- u = 0 ou v = 0
- Il existe $\lambda \in \mathbb{R}_+^*$ tel que $u = \lambda v$

On notera que : $u = \lambda v$ avec $\lambda \in \mathbb{R}_+^*$ \iff $v = \lambda' u$ avec $\lambda' \in \mathbb{R}_+^*$

Par exemple pour le sens direct, on pose $\lambda' = \frac{1}{\lambda} \in \mathbb{R}_+^*$. On aurait donc pu remplacer la deuxième assertion de la définition par "Il existe $\lambda' \in \mathbb{R}_+^*$ tel que $v = \lambda' u$.

Remarque. Si on note M_u (resp. M_v) le point d'affixe u (resp. v), alors u et v sont positivement liés si et seulement si les vecteurs $\overrightarrow{OM_u}$ et $\overrightarrow{OM_v}$ sont **colinéaires et de même sens**.

Théorème 6.14 - Cas d'égalité dans l'inégalité triangulaire

Soit $u, v \in \mathbb{C}$. On a |u+v| = |u| + |v| si et seulement si u et v sont positivement liés.

On peut s'en convaincre avec des affixes. Soit A,B,C trois points du plan de sorte que \overrightarrow{AB} est le vecteur d'affixe u, \overrightarrow{BC} le vecteur d'affixe v. Le cas d'égalité stipule alors que :

$$\|\overrightarrow{AC}\| = \|\overrightarrow{AB}\| + \|\overrightarrow{BC}\| \iff \overrightarrow{AB} \text{ et } \overrightarrow{BC} \text{ sont colinéaires et de même sens} \iff B \text{ appartient au segment } [AC]$$

4 L'exponentielle $e^{i\theta}$

4.1 Cercle et disque du plan complexe

Définition 6.15 - Cercle et disque

Soit *A* un point du plan complexe d'affixe $a \in \mathbb{C}$, et $r \ge 0$. On note

$$C(a,r) := \left\{z \in \mathbb{C} \;\middle|\; |z-a| = r\right\} \qquad \qquad D(a,r) := \left\{z \in \mathbb{C} \;\middle|\; |z-a| \leq r\right\}$$

Cet ensemble correspond au <u>cercle de centre A et de rayon r.</u> Cet ensemble correspond au <u>disque de centre A et de rayon r.</u>

G. Peltier 9 / 26

En effet, |z-a| représente la distance entre (les points d'affixes) z et a. C(a,r) est donc l'ensemble des complexes z situés à une distance r du complexe a.

Définition 6.16

On appelle $\underline{\text{cercle unit\'e}}$ ou $\underline{\text{cercle trigonom\'etrique}}$ l'ensemble des complexes de module 1, i.e. C(0,1). On note cet ensemble $\mathbb U$.

4.2 La notation $e^{i\theta}$

Définition 6.17 - Notation exponentielle

Soit $\theta \in \mathbb{R}$. On introduit la notation

$$e^{i\theta} := \cos\theta + i\sin\theta$$

Théorème 6.18

Soit $\theta \in \mathbb{R}$. On a $|e^{i\theta}| = 1$.

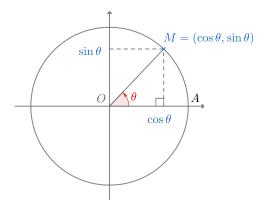
Démonstration.

On se place sur le plan complexe. Soit $\theta \in \mathbb{R}$. Le point M d'affixe $e^{i\theta}$ correspond exactement au point du cercle unité de coordonnées $(\cos \theta, \sin \theta)$

La valeur θ correspond à l'angle orienté que fait \overrightarrow{OM} avec l'axe des abscisse.

Réciproquement, tout point du cercle unité \mathbb{U} peut se représenter par un affixe de la forme $e^{i\theta}$ avec $\theta \in \mathbb{R}$ (on peut même prendre $\theta \in [0,2\pi[$).

Ceci fournit une définition paramétrée de $\ensuremath{\mathbb{U}}$:



Théorème 6.19

$$\mathbb{U} = \left\{ z \in \mathbb{C} \mid |z| = 1 \right\} = \left\{ e^{i\theta} \mid \theta \in \mathbb{R} \right\}$$

Les deux expressions de $\mathbb U$ ci-dessus nous fournissent deux caractérisations : pour tout $z\in\mathbb C$, on a :

$$z \in \mathbb{U} \iff \dots \iff \dots$$

La caractérisation avec le module permet d'obtenir deux conséquences importantes de l'ensemble $\mathbb U$:

10 / 26 G. Peltier

Théorème 6.20

Pour tout $z \in \mathbb{C}^*$, on a $\frac{z}{|z|} \in \mathbb{U}$

De plus, \mathbb{U} est stable passage à l'inverse et par produit : pour tous $u, v \in \mathbb{U}$, on a $\frac{1}{u} \in \mathbb{U}$ et $uv \in \mathbb{U}$.

Démonstration.

De plus,
$$\left|\frac{1}{u}\right| = \frac{1}{|u|} = \frac{1}{1} = 1$$
 donc $\frac{1}{u} \in \mathbb{U}$. Enfin, $|uv| = |u| \times |v| = 1$ donc $uv \in \mathbb{U}$.

4.3 Propriétés de l'exponentielle complexe

Pour se rappeler les valeurs particulières de $e^{i\theta}$, on peut tracer un cercle unité :

Exemple 6.
$$\circ e^{i0} = \dots e^{i\pi} = \dots$$

 $\circ e^{i\frac{\pi}{2}} = \dots e^{-i\frac{\pi}{2}} = \dots$

À noter : plutôt que d'écrire $e^{i(-\theta)}$, on peut écrire à la place $e^{-i\theta}$, comme pour $e^{-i\frac{\pi}{2}}$ plus haut.

Théorème 6.21 - Propriétés de l'exponentielle complexe

Soit $\theta, \theta' \in \mathbb{R}$.

1.
$$e^{i\theta} = e^{i\theta'} \iff \theta \equiv \theta'$$
 [2 π] et en particulier $e^{i\theta} = 1$ si et seulement si $\theta \equiv 0$ [2 π].

2. Relation fondamentale :
$$\boxed{e^{i(\theta+\theta')}=e^{i\,\theta}e^{i\,\theta'}}$$

3.
$$\frac{1}{e^{i\theta}} = e^{-i\theta}$$
 et $\overline{e^{i\theta}} = e^{-i\theta}$

4.
$$e^{i(\theta-\theta')} = \frac{e^{i\theta}}{e^{i\theta'}}$$

Démonstration. On admet la première assertion.

2. Les complexes $e^{i(\theta+\theta')}$ et $e^{i\theta}e^{i\theta'}$ sont égaux si et seulement s'ils ont mêmes parties réelle et imaginaire. Or,

$$Re(e^{i(\theta+\theta')}) = Re(e^{i\theta}e^{i\theta'})$$

$$\iff \cos(\theta+\theta') = Re\left[(\cos\theta+i\sin\theta)\left(\cos\theta'+i\sin\theta'\right)\right]$$

$$\iff \cos(\theta+\theta') = \cos\theta\cos\theta' - \sin\theta\sin\theta'$$

et cette dernière assertion est vraie. On montre de même que $\mathrm{Im}(e^{i(\theta+\theta')})=\mathrm{Im}(e^{i\theta}e^{i\theta'})$. Ainsi, on a bien $e^{i(\theta+\theta')}=e^{i\theta}e^{i\theta'}$.

3.

4.

Théorème 6.22 - Formules d'Euler et de Moivre

• (Formules d'Euler) Pour tout $\theta \in \mathbb{R}$

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

• (Formule de Moivre) Pour tous $\theta \in \mathbb{R}$ et $n \in \mathbb{Z}$

$$\left(e^{i\,\theta}\right)^n = e^{i\,n\theta}$$

4.4 Application à la trigonométrie

Méthode - Linéarisation

Pour $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$, on veut transformer $\cos^n \theta$ ou $\sin^n \theta$ en somme de termes $\cos(k\theta)$ et/ou $\sin(k\theta)$ avec $k \in \mathbb{N}$.

- 1. Par les formules d'Euler, on exprime $\cos^n \theta = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^n$, idem si c'est $\sin^n t$.
- 2. On développe avec la formule du binôme de Newton.
- 3. On regroupe les exponentielles conjuguées ($e^{ik\theta}$ avec $e^{-ik\theta}$), en appliquant Euler dans l'autre sens.

La linéarisation permet ensuite de calculer facilement des intégrales, dérivées, sommes, etc. car toutes ces opérations sont... linéaires!

Exemple 7. Soit $\theta \in \mathbb{R}$. Linéariser $\sin^4 \theta$.

Remarque. Cette linéarisation permet, entre autres, de facilement calculer $\int_0^{2\pi} \sin^4(\theta) d\theta$

Méthode - "Tchebychevisation"

Pour $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$, on peut transformer $\cos(n\theta)$ ou $\sin(n\theta)$ en somme de termes $\cos^k \theta$ et/ou $\sin^k \theta$. On donne la méthode avec $\sin(n\theta)$.

- 1. On utilise la formule de Moivre : $\sin(n\theta) = \operatorname{Im}\left(e^{in\theta}\right) = \operatorname{Im}\left(\left(\cos\theta + i\sin\theta\right)^n\right)$.
- 2. On développe $(\cos\theta+i\sin\theta)^n$ avec la formule du binôme de Newton.
- 3. On ne garde que la partie imaginaire pour avoir $\sin(n\theta)$.
- 4. On transforme éventuellement les sin et cos avec $\cos^2 \theta + \sin^2 \theta = 1$.

Exemple 8. Pour $\theta \in \mathbb{R}$, exprimer $\cos(4\theta)$ comme un polynôme en $\cos \theta$.

5 La forme trigonométrique

5.1 Forme trigonométrique

Définition 6.23 - Forme trigonométrique

Soit $z \in \mathbb{C}^*$. On dit que z admet une <u>forme trigonométrique</u> (ou <u>forme exponentielle</u>) s'il existe $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$ tels que

$$z = r(\cos\theta + i\sin\theta) = re^{i\theta}$$

Théorème 6.24

Tout complexe $z \in \mathbb{C}^*$ admet une forme trigonométrique, et peut donc s'écrire $z = re^{i\theta}$ avec $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$.

De plus, r = |z| donc il n'y a qu'une seule valeur possible pour r.

G. Peltier 13 / 26

Par convention, on considère que le complexe nul, z=0, n'admet pas de forme trigonométrique, ceci permet de garantir que r=|z|>0.

Démonstration.

Exemple 9. Mettre sous forme trigonométrique les complexes z = 2i et u = -i et v = -3.

Remarque. Un complexe non nul z étant donné, lorsqu'on écrit $z = re^{i\theta}$, le r est unique et vaut |z|, mais θ , lui, n'est pas unique. De ce fait, contrairement à la forme algébrique, **il n'y a pas unicité de la forme trigonométrique**. Plus précisément, on a la pseudo-identification suivante :

Théorème 6.25 - Pseudo-identification sous forme trigo

Soit $r, r' \in \mathbb{R}_+^*$ et $\theta, \theta' \in \mathbb{R}$.

$$re^{i\theta} = r'e^{i\theta'} \Longleftrightarrow egin{cases} r = r' \\ \theta \equiv \theta' \ [2\pi] \end{cases}$$

Démonstration. Le sens réciproque est évident. Pour le sens direct, on suppose que $re^{i\theta} = r'e^{i\theta'}$. Alors en passant au module, on trouve r = r'. Après division par r, on en déduit $e^{i\theta} = e^{i\theta'}$, ce qui équivaut à $\theta \equiv \theta'$ [2 π].

5.2 Argument et interprétation géométrique de $re^{i\theta}$

Étant donné un complexe z non nul, on a vu qu'il existe plusieurs valeurs de heta telles que $z=re^{i\, heta}$, par exemple :

$$z = -3 = 3e^{i\pi} = 3e^{-i\pi} = 3e^{i3\pi} = \dots$$

Comme vu plus haut, deux de ces valeurs ne diffèrent que d'un multiple de 2π . Cela motive la définition suivante :

Définition 6.26 – Argument

Soit $z \in \mathbb{C}^*$ et r = |z|. Tout réel θ tel que $z = re^{i\theta}$ est appelé <u>UN argument</u> de z.

On note $\arg z$ un argument *quelconque* de z. Ce nombre n'est défini qu'à un multiple de 2π près. Cependant, il existe un unique argument de z dans $]-\pi,\pi]$. On l'appelle l'argument principal de z.

14 / 26 G. Peltier

Comme $\arg z$ n'est défini qu'à 2π près, on évitera d'écrire " $\arg z$ = ", et on écrira toujours " $\arg z$ $\equiv \dots [2\pi]$ ". Par la définition, on a donc :

$$arg(re^{i\theta}) \equiv \theta \ [2\pi]$$

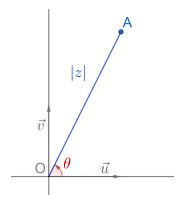
Exemple 10. $\arg(-3) \equiv \arg(3e^{i\pi}) \equiv \pi [2\pi]$ et $\arg(1) \dots$

On ne peut écrire "arg(z)" que si z est un complexe **non nul**.

Soit *A* un point du plan d'affixe $z \neq 0$. On cherche *r* et θ tels que $z = re^{i\theta}$.

Comme r = |z|, le réel r représente la distance OA, qui est toujours strictement positive (car $z \neq 0$).

Ensuite, on peut prendre pour θ l'angle orienté que fait \overrightarrow{OA} avec l'axe des abscisses. C'est UN argument qui convient.



15/26

Exemple 11. Placer le point complexe z = 1 - i sur le plan complexe et en déduire sa forme trigonométrique.

5.3 La forme fait la force – Passer d'une forme à l'autre

On connait maintenant deux formes pour un nombre complexe : a+ib avec $a,b\in\mathbb{R}$, valide pour tout complexe de \mathbb{C} , et $re^{i\theta}$ avec r>0 et $\theta\in\mathbb{R}$, qui est valide pour tout complexe de \mathbb{C}^* . Comment passer d'une forme à l'autre?

Remarque. Il est très facile de passer de la forme trigonométrique à la forme algébrique :

$$z = re^{i\theta} = \underline{r\cos\theta} + i\underline{r\sin\theta}$$

L'opération inverse est plus délicate.

Méthode - Passer de la forme algébrique à la forme trigonométrique

Soit $z=a+ib\in\mathbb{C}^*$ un complexe non nul sous forme algébrique dont on cherche la forme trigonométrique.

- 1. On calcule le module : $|z| = \sqrt{a^2 + b^2}$.
- 2. On factorise par |z|:

$$z = |z| \left(\frac{a}{|z|} + i \frac{b}{|z|} \right)$$

puis on cherche $\theta \in \mathbb{R}$ tel que $\frac{a}{|z|} = \cos \theta$ et $\frac{b}{|z|} = \sin \theta$.

3. On en déduit que $z=|z|e^{i\theta}$, qui est la forme trigonométrique recherchée.

G. Peltier

Exemple 12. Mettre sous forme trigonométrique le complexe $z = \sqrt{3} - i$

Remarque. Entre les formes algébrique et trigonométrique, **quelle forme est la plus adaptée ?** Cela dépend de la situation :

- La forme algébrique est très pratique pour calculer des sommes, moins pour les produits, et très inadéquate pour des puissances élevées : calculer directement $(a+ib)^{10}$ est une mauvaise idée.
- La forme trigonométrique est peu adaptée au calcul de sommes : il est difficile de calculer directement $re^{i\theta} + r'e^{i\theta'}$. Par contre, elle est très appréciable pour les produits et surtout les puissances, cf ci-dessous.

Exemple 13. Donner la forme algébrique de $(1+i)^{10}$.

Remarque. Soit $z = re^{i\theta}$ et $z' = r'e^{i\theta'}$ deux complexes (non nuls) sous forme trigonométrique. Les propriétés de l'exponentielle complexe permettent de déduire les propriétés suivantes :

1.
$$zz' = (rr')e^{i(\theta+\theta')}$$
 (forme trigo de zz')

3.
$$\frac{z}{z'} = \frac{r}{r'}e^{i(\theta - \theta')}$$
 (forme trigo de $\frac{z}{z'}$)

2.
$$\frac{1}{z} = \frac{1}{r}e^{-i\theta}$$
 (forme trigo de $\frac{1}{z}$)

4. Pour tout
$$n \in \mathbb{Z}$$
, $z^n = r^n e^{in\theta}$ (forme trigo de z^n)

Remarque. En particulier, si on multiplie z par $e^{i\theta}$, cela revient à ajouter θ à son argument. Dans les exemples ci-dessous, on confond le complexe et le point qui a pour affixe ce complexe :

- Le complexe $e^{i\theta}z$ s'obtient par **une rotation d'angle** θ à partir du point d'affixe z.
- Le complexe $-z=ze^{i\pi}$ s'obtient par une rotation d'angle π à partir de z.
- Le complexe $iz = ze^{i\frac{\pi}{2}}$ s'obtient par une rotation d'angle $\frac{\pi}{2}$ à partir de z.

Par exemple $i^2 = -1$ s'obtient par rotation du complexe i d'angle $\frac{\pi}{2}$.

5.4 Compléments de calculs en complexe et trigonométrie

On l'a dit : la forme trigonométrique est très mauvaise avec les sommes. Pour calculer une somme du type $re^{ia} + r'e^{ib}$, il est conseillé de passer par la forme algébrique. Toutefois, si on doit mettre sous forme trigonométrique une expression du type $e^{ia} \pm e^{ib}$, il est souvent plus efficace d'utiliser la méthode de l'angle moitié :

Méthode - Angle moitié

Soit a,b deux réels. Pour calculer $e^{ia} \pm e^{ib}$, on factorise cette expression par $e^{i\theta}$ où l'angle $\theta = \frac{a+b}{2}$ est appelé l'angle moitié, puis d'utiliser une formule d'Euler.

Voici une situation type:

16 / 26 G. Peltier

Exemple 14. On pose $a = \frac{\pi}{9}$. Mettre $\frac{e^{ia} + e^{-2ia}}{e^{-ia} - e^{i2a}}$ sous forme trigonométrique.

Plus généralement, on peut donner les formules suivantes, qui ne sont pas à retenir par cœur mais à savoir retrouver :

•
$$e^{ia} + e^{ib} = e^{i\frac{a+b}{2}} \left(e^{i\frac{a-b}{2}} + e^{-i\frac{a-b}{2}} \right)$$

$$\left(= 2\cos\left(\frac{a-b}{2}\right) e^{i\frac{a+b}{2}} \right)$$

$$\bullet \ e^{ia} - e^{ib} = e^{i\frac{a+b}{2}} \left(e^{i\frac{a-b}{2}} - e^{-i\frac{a-b}{2}} \right) \qquad \left(= 2i \sin\left(\frac{a-b}{2}\right) e^{i\frac{a+b}{2}} \right)$$

Ces formules permettent de déduire de nouvelles formules de trigonométrie pour $\cos a \pm \cos b$ et $\sin a \pm \sin b$:

• En passant à la partie réelle dans $e^{ia}+e^{ib}=2\cos\left(\frac{a-b}{2}\right)e^{i\frac{a+b}{2}}$, on trouve :

$$\cos a + \cos b = 2\cos\left(\frac{a-b}{2}\right)\cos\left(\frac{a+b}{2}\right)$$

• En passant à la partie imaginaire dans cette même relation, on trouve :

$$\sin a + \sin b = 2\cos\left(\frac{a-b}{2}\right)\sin\left(\frac{a+b}{2}\right)$$

On peut alors en déduire une formule pour $\sin a - \sin b$ avec la substitution $b \to -b$.

• En passant à la partie réelle dans $e^{ia} - e^{ib} = \dots$ on trouve une formule pour $\cos a - \cos b$.

6 Résolution d'équations dans $\mathbb C$

6.1 Racine carrée d'un nombre complexe

Définition 6.27

Soit $\omega \in \mathbb{C}$. On dit que $z \in \mathbb{C}$ est une <u>racine carrée</u> de ω si $z^2 = \omega$.

Théorème 6.28

Tout complexe $\omega \neq 0$ admet exactement deux racines carrées. Si z est une racine carrée, l'autre est -z. Si $\omega = 0$, alors l'unique racine carrée de ω est 0.

Exemple 15. \circ Les racines carrées de -1 sont i et -i.

- ∘ Plus généralement, si $a \in \mathbb{R}_{-}^{*}$, les racines complexes de a sont $i\sqrt{|a|}$ et $-i\sqrt{|a|}$.
- Les racines carrées (au sens complexe) de 4 sont 2 et -2: attention, on a toujours $\sqrt{4} = 2$: par convention, la valeur de \sqrt{x} avec $x \in \mathbb{R}_+$ correspond à la racine carrée qui est positive.

Si $\omega \in \mathbb{C}$ et $\omega \notin \mathbb{R}_+$, on ne peut pas écrire " $\sqrt{\omega}$ ". Cela n'est possible QUE SI $\omega \in \mathbb{R}_+$. On ne DOIT PAS écrire " $\sqrt{-1}$ " ou " \sqrt{i} ".

Méthode - Calcul d'une racine carrée

Étant donné $\omega \in \mathbb{C}^*$, on cherche $z \in \mathbb{C}$ tel que $z^2 = \omega$.

• Sous forme trigonométrique : si $\omega = re^{i\theta}$, alors les racines sont simplement

$$\sqrt{r}e^{i\frac{\theta}{2}}$$
 et $-\sqrt{r}e^{i\frac{\theta}{2}} = \sqrt{r}e^{i\left(\frac{\theta}{2}+\pi\right)}$

• Sous forme algébrique : si ω est sous forme algébrique, on pose z=a+ib avec $a,b\in\mathbb{R}$. Puis, comme $z^2=\omega$, on peut écrire

$$\begin{cases} |z|^2 = |\omega| \\ \operatorname{Re}(z^2) = \operatorname{Re}\omega \\ \operatorname{Im}(z^2) = \operatorname{Im}\omega \end{cases} \quad \text{donc} \quad \begin{cases} a^2 + b^2 = |\omega| \\ a^2 - b^2 = \operatorname{Re}\omega \\ 2ab = \operatorname{Im}\omega \end{cases}$$

Les deux premières lignes déterminent les valeurs a^2 et b^2 . Ainsi, a et b sont déterminés au signe près : il y a donc 4 valeurs possibles pour le couple (a,b). Ensuite, la dernière ligne $2ab = \operatorname{Im} \omega$ donne le signe de ab. Cela ne laisse que deux valeurs possibles pour (a,b). Si (a_0,b_0) est une de ces deux valeurs, l'autre est $(-a_0,-b_0)$. Les racines carrées de ω sont alors :

$$a_0 + ib_0$$
 et $-a_0 - ib_0$

Lorsque c'est possible, il vaut mieux toujours passer par la forme trigonométrique pour trouver les racines carrées.

Exemple 16. Déterminer les racines carrées dans \mathbb{C} de $u=3e^{i\frac{\pi}{5}}$ et de v=8-6i.

6.2 Équations du second degré à coefficients complexes

Théorème 6.29

Soit $a \in \mathbb{C}^*$ et $b,c \in \mathbb{C}$. On cherche les racines du polynôme $P(z) := az^2 + bz + c$. On introduit le <u>discriminant</u> du trinôme P qui est un nombre *complexe*:

$$\Delta = b^2 - 4ac \in \mathbb{C}$$

• Si $\Delta \neq 0$, alors Δ admet deux racines carrées qu'on notera δ et $-\delta$. Dans ce cas les racines de P sont :

$$z_1 = \frac{-b - \delta}{2a}$$
 et $z_2 = \frac{-b + \delta}{2a}$

et on peut écrire:

$$P(z) = a(z - z_1)(z - z_2)$$

• Si $\Delta = 0$, alors P admet une unique racine (double) : $z_0 = -\frac{b}{2a}$. Dans ce cas, on a

$$P(z) = a(z - z_0)^2$$

Remarque (Cas particuliers pour les racines de Δ).

- Si $\Delta \in \mathbb{R}_+^*$, alors on peut prendre $\delta = \sqrt{\Delta}$, l'autre racine étant $-\delta = -\sqrt{\Delta}$: comme dans le cas réel, on a bien deux racines (qui peuvent encore être complexes si a et b sont complexes)
- Si $\Delta \in \mathbb{R}_{-}^{*}$, alors on peut prendre $\delta = i\sqrt{|\Delta|}$, l'autre racine étant $-\delta = -i\sqrt{|\Delta|}$: il y a là encore deux racines distinctes (mais pas nécessairement conjuguées).

Attention, si $\Delta \notin \mathbb{R}$, alors il ne faut surtout pas écrire " $\Delta > \dots$ " ou " $\Delta < \dots$ ", pas plus que " $\sqrt{\Delta}$ " si $\Delta \notin \mathbb{R}_+$.

Exemple 17. Résoudre
$$z^2 + (2+i)z - \frac{5}{4} + \frac{5}{2}i = 0$$
.

Théorème 6.30 - Factorisation et racine

Soit P un polynome à coefficients complexes de degré $n \ge 1$. Si P admet a pour racine, càd si P(a) = 0, alors il existe un polynôme Q de degré n-1 tel que

$$P(z) = (z - a)Q(z)$$

Pour trouver Q, on peut procéder par identification comme pour un polynôme réel. C'est notamment utile lorsqu'on veut factoriser un polynôme après avoir trouvé une racine évidente.

Exemple 18. Le polynôme $z^3 + (i-1)z^2 + (2-i) - 2$ admet 1 comme racine évidente. Ainsi

$$z^{3} + (i-1)z^{2} + (2-i) - 2 = (z-1)(\dots)$$

et si on veut trouver les autres racines, on peut calculer le discriminant du trinôme ci-dessus.

6.3 Relations coefficients racines

Théorème 6.31 - Somme et produit des racines

Soit $a \in \mathbb{C}^*$ et $b, c \in \mathbb{C}$.

20/26

1. On note z_1 et z_2 les deux racines de $az^2 + bz + c = 0$, éventuellement confondues si $\Delta = 0$. Alors :

$$z_1 + z_2 = -\frac{b}{a}$$
 et $z_1 z_2 = \frac{c}{a}$.

2. Réciproquement, pour tous complexes $S, P \in \mathbb{C}$, les solutions du système

$$\begin{cases} z_1 + z_2 = S \\ z_1 z_2 = P \end{cases}$$

G. Peltier

sont exactement les solutions de l'équation $z^2 - Sz + P = 0$.

Exemple 19. Résoudre
$$\begin{cases} z_1 + z_2 = i \\ z_1 z_2 = 2 \end{cases}$$

6.4 Racines *n*-ième

Définition 6.32

Soit $n \in \mathbb{N}^*$. Un complexe z vérifiant $z^n = 1$ est appelé <u>racine n-ième de l'unité</u>. On note

$$\mathbb{U}_n := \{ z \in \mathbb{C} \mid z^n = 1 \}$$

l'ensemble des racines *n*-ièmes de l'unité.

Exemple 20. \circ 1 est toujours une racine n-ième de l'unité quel que soit n.

- $\circ i^4 = 1$ donc i est une racine 4-ième de l'unité.
- o $i^8 = i^4 i^4 = 1$ donc i est aussi une racine 8-ième de l'unité.

Remarque. Si $z^n = 1$, alors $|z|^n = 1$, donc |z| = 1. Ainsi, $z \in \mathbb{U}$. Autrement dit, on a toujours $\mathbb{U}_n \subset \mathbb{U}$.

Théorème 6.33 – Détermination de \mathbb{U}_n

Soit $n \in \mathbb{N}^*$. Alors il y a exactement n racines n-ièmes de l'unité : ce sont les complexes :

$$e^{\frac{2ik\pi}{n}}$$
 avec $k \in [0, n-1]$

Autrement dit:

$$\mathbb{U}_{n} = \left\{ e^{i0}, \quad e^{i\frac{2\pi}{n}}, \quad e^{i\frac{4\pi}{n}}, \quad e^{i\frac{6\pi}{n}}, \quad \dots, \quad e^{i\frac{2(n-1)\pi}{n}} \right\}$$

Démonstration. Soit $z \in \mathbb{U}$. On pose $z = e^{i\theta}$ avec $\theta \in \mathbb{R}$. Sans perte de généralité, on peut supposer que $\theta \in$

21/26

 $[0, 2\pi[$.

$$z \in \mathbb{U}_n \iff (e^{i\theta})^n = 1$$

$$\iff e^{in\theta} = 1$$

$$\iff n\theta \equiv 0 \ [2\pi]$$

$$\iff \theta \equiv 0 \ \left[\frac{2\pi}{n}\right]$$

$$\iff \theta = 0 \text{ ou } \theta = \frac{2\pi}{n} \text{ ou } \dots \text{ ou } \theta = \frac{2(n-1)\pi}{n}$$

et ce car $\theta \in [0,2\pi[$. D'où l'ensemble \mathbb{U}_n ci-dessus.

Les racines n-ièmes de l'unité se répartissent de manière équidistantes sur le cercle unité, chacune étant écartée d'un angle $\frac{2\pi}{n}$ de la suivante :

Définition 6.34

Soit $\omega \in \mathbb{C}$ et $n \in \mathbb{N}^*$. On appelle racine n-ième de ω tout nombre complexe z tel que $z^n = \omega$.

Avec $\omega = 1$, on retrouve les racines n-ièmes de l'unité (qui ne sont donc rien d'autre que les racines n-ièmes du nombre complexe 1).

Théorème 6.35 - Calcul d'une racine n-ième

Soit $n \in \mathbb{N}^*$. Tout complexe $\omega \neq 0$ admet exactement n racines carrées : en posant $\omega = re^{i\theta}$ avec $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$, les racines n-ièmes de ω sont :

$$r^{\frac{1}{n}}e^{i\frac{\theta}{n}}, \qquad r^{\frac{1}{n}}e^{i\frac{\theta}{n}}e^{i\frac{2\pi}{n}}, \qquad r^{\frac{1}{n}}e^{i\frac{\theta}{n}}e^{i\frac{4\pi}{n}}, \qquad \cdots \qquad r^{\frac{1}{n}}e^{i\frac{\theta}{n}}e^{i\frac{2(n-1)\pi}{n}}$$

Si $\omega = 0$, alors l'unique racine n-ième de ω est 0.

Il suffit donc de prendre une racine n-ième de ω , typiquement $r^{\frac{1}{n}}e^{i\frac{\theta}{n}}$, et de multiplier cette racine par toutes les racines n-ièmes de l'unité pour avoir toutes les racines n-ièmes de ω .

Exemple 21. Résoudre $z^3 = 2i$.

7 Exponentielle complexe

Définition 6.36

Soit $z \in \mathbb{C}$. Le complexe <u>exponentielle de z</u>, noté e^z ou $\exp(z)$ est défini par

$$e^z = e^{\operatorname{Re} z} e^{i \operatorname{Im} z}$$

On remarquera qu'ainsi défini, e^z se trouve sous la forme trigonométrique :

$$e^z = \underbrace{e^{\operatorname{Re}z}}_{r>0} \underbrace{e^{i\operatorname{Im}z}}_{e^{i\theta}}$$

On a donc $|e^z| = r = e^{\text{Re }z}$ et $\arg(e^z) \equiv \text{Im }z \ [2\pi]$. Il suffit de garder cela en tête pour s'en sortir dans les exercices.

Théorème 6.37 - Propriétés de l'exponentielle complexe

Pour tous $z, u, v \in \mathbb{C}$,

- 1. $e^z \in \mathbb{C}^*$
- 2. $\overline{e^z} = e^{\overline{z}} = e^{\operatorname{Re} z} e^{-i \operatorname{Im} z}$
- 3. $e^{-z} = \frac{1}{e^z}$
- 4. $e^{u+v} = e^u e^v$ et $e^{u-v} = \frac{e^u}{e^v}$

Exemple 22. Résoudre $e^z = \sqrt{3} + i$ dans \mathbb{C} .

8 Géométrie – alignement, orthogonalité de vecteurs

8.1 Propriétés de l'argument

Théorème 6.38 - Calculs avec arg

Soit $u, v \in \mathbb{C}^*$. Alors

•
$$\arg \overline{u} \equiv -\arg u \left[2\pi \right]$$

•
$$arg(uv) \equiv arg u + arg v [2\pi]$$

•
$$\arg \frac{u}{v} \equiv \arg u - \arg v \left[2\pi \right]$$

•
$$arg(u^n) \equiv n arg u [2\pi] pour tout n \in \mathbb{Z}$$
.

Démonstration. Comme $u, v \in \mathbb{C}^*$, on peut poser $u = re^{i\theta}$ et $v = r'e^{i\theta'}$ avec $r, r' \in \mathbb{R}_+^*$ et $\theta, \theta' \in \mathbb{R}$. Pour montrer ces formules, il suffit de mettre \overline{u} , uv, $\frac{u}{v}$ et u^n sous forme trigonométrique pour calculer des arguments. Montrons par exemple que $\arg(uv) \equiv \arg u + \arg v \ [2\pi]$.

Théorème 6.39 - Caractérisation des réels et imaginaires purs par l'argument

Soit $z \in \mathbb{C}^*$.

•
$$\arg z \equiv 0 \ [2\pi] \iff z \in \mathbb{R}_+^*$$

•
$$\arg z \equiv 0 \ [\pi] \iff z \in \mathbb{R}^*$$

•
$$\arg z \equiv \pi \ [2\pi] \iff z \in \mathbb{R}^*_{\perp}$$

•
$$\arg z \equiv \frac{\pi}{2} [\pi] \iff z \in i \mathbb{R}^*$$

8.2 Alignement de vecteurs

On considère trois points A, B et C du plan complexe, d'affixe respectives z_A , z_B et z_C . On peut utiliser les nombres complexes pour mesurer l'angle orienté $(\overrightarrow{AB}, \overrightarrow{AC})$.

En effet, si on définit les points $M(z_B - z_A)$ et $N(z_C - z_B)$, alors on constate que

$$(\overrightarrow{AB}, \overrightarrow{AC}) = (\overrightarrow{OM}, \overrightarrow{ON})$$

Maintenant, si on note \overrightarrow{u} le vecteur (1,0), une simple relation de Chasles fournit :

$$(\overrightarrow{OM},\overrightarrow{ON}) = (\overrightarrow{u},\overrightarrow{ON}) - (\overrightarrow{u},\overrightarrow{OM})$$

Or, l'interprétation géométrique de l'argument entraine :

$$(\overrightarrow{u},\overrightarrow{ON}) \equiv \arg(z_C - z_B) [2\pi]$$

$$(\overrightarrow{u}, \overrightarrow{OM}) \equiv \arg(z_B - z_A) [2\pi]$$

En mettant bout à bout ces différentes égalités, on obtient le théorème suivant :

Théorème 6.40

Soit A, B et C trois points du plan d'affixes respectives z_A , z_B , et z_C . Alors :

$$(\overrightarrow{AB}, \overrightarrow{AC}) \equiv \arg(z_C - z_B) - \arg(z_B - z_A) [2\pi]$$

En particulier, si $z_A \neq z_B$ (i.e. si A et B sont distincts) :

$$(\overrightarrow{AB}, \overrightarrow{AC}) \equiv \arg\left(\frac{z_C - z_B}{z_B - z_A}\right) [2\pi]$$

Corollaire 6.41

Avec les mêmes hypothèses que le Théorème ci-dessus,

$$A,B,C$$
 sont alignés $\iff (\overrightarrow{AB},\overrightarrow{AC}) \equiv 0 \ [\pi]$

$$\iff \arg\left(\frac{z_C-z_A}{z_B-z_A}\right) \equiv 0 \ [\pi]$$

$$\iff \frac{z_C-z_A}{z_B-z_A} \in \mathbb{R}$$

$$(AB)$$
 et (AC) sont perpendiculaires en $A \iff (\overrightarrow{AB}, \overrightarrow{AC}) \equiv \frac{\pi}{2} \left[\pi\right]$
 $\iff \arg\left(\frac{z_C - z_A}{z_B - z_A}\right) \equiv \frac{\pi}{2} \left[\pi\right]$
 $\iff \frac{z_C - z_A}{z_B - z_A} \in i \mathbb{R}$

Dans un exercice de géométrie complexe, un calcul d'un quotient est souvent le coeur du problème.

Exemple 23. Soit A, B, C des points d'affixes respectives $z_A = 2i$, $z_B = -1 + i$ et $z_C = 2 - 2i$. Donner la nature du triangle ABC.

9 Méthodes pour les exercices

Méthode

Soit $z \in \mathbb{C}$.

Pour montrer que z est réel, on peut :

- Montrer que Imz = 0.
- Montrer que $z = \overline{z}$.
- Si $z \neq 0$, montrer que $arg(z) \equiv 0 [\pi]$

Pour montrer que z est imaginaire pur, on peut :

- Montrer que Rez = 0.
- Montrer que $z = -\overline{z}$.
- Si $z \neq 0$, montrer que $\arg(z) \equiv \frac{\pi}{2} \left[\pi \right]$

Méthode

La forme algébrique est utile pour calculer :

- (++) des sommes / différences
- (ok) des produits / quotients
- (bof) des puissances / racines carrées
- (--) des puissances / racines *n*-ièmes

La forme trigonométrique est utile pour calculer :

- (bof) des sommes / différences
 - (ok) avec l'angle moitié
- (++) des produits / quotients
- (++) des puissances / racines *n*-ièmes